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Abstract 
 

Many nonacoustic sensors are now available to aug-
ment user authentication.  Devices such as the GEMS 
(glottal electromagnetic micro-power sensor), the EGG 
(electroglottograph), and the P-mic (physiological mic) 
all have distinct methods of measuring physical processes 
associated with speech production.  A potential exciting 
aspect of the application of these sensors is that they are 
less influenced by acoustic noise than a microphone.  A 
drawback of having many sensors available is the need to 
develop features and classification technologies appro-
priate to each sensor.  We therefore learn feature extrac-
tion based on data.  State of the art classification with 
Gaussian Mixture Models and Support Vector Machines 
is then applied for multimodal authentication.  We apply 
our techniques to two databases—the Lawrence Liver-
more GEMS corpus and the DARPA Advanced Speech 
Encoding Pilot corpus.  We show the potential of nona-
coustic sensors to increase authentication accuracy in 
realistic situations. 
 
1. Introduction 
 
Speaker authentication is a rich area for exploration of 
multimodality.  Many facets of the speech production 
process are measurable through a variety of sensors.  Tra-
ditionally, visual lip reading has been used to supplement 
speaker authentication and speech recognition [15,26].  
These methods rely upon tracking the lip contour over 
time and then using the sequence of movements to sup-
plement standard audio-only verification.  These methods 
have been quite successful, leading to large gains in accu-
racy in high noise conditions.   
 
Other methods of monitoring speech production are also 
available.  Non-invasive sensors that are attached in the 
throat area have been available for many years; we call 
these nonacoustic sensors.  These sensors nominally 
measure aspects of the speech production process related 
to the speech excitation.  Typical sensors that we have 
explored in this study are the EGG (electroglottograph), 

the GEMS (glottal electromagnetic micro-power sensor), 
and the P-mic (physiological mic).  Since traditional 
methods of verification [18] rely upon features designed 
to capture vocal tract information—e.g., mel-frequency 
cepstral coefficients—we would expect that multimodal 
fusing of excitation and vocal tract features would benefit 
recognition in both quiet and noisy conditions.  An added 
benefit of nonacoustic sensors is that they are less influ-
enced by acoustic noise.  For the case of the EGG and the 
GEMS, the throat is exposed to RF signals; for the case of 
the P-mic, the sensor output is dominated by the vibra-
tions sensed on the throat.  These modes of measurement 
do not directly monitor air pressure in the ambient envi-
ronment. 
 
There has been several prior works on the use of glottal 
waveforms for recognition.  Gable [8] used waveforms 
from the GEMS system for speaker verification; his work 
focused on using methods such as dynamic time warping 
for text-dependent verification.  Plumpe [16] used inverse 
filtering techniques on the acoustic waveform to derive 
glottal waveform signals; speaker recognition was then 
performed.  Both throat microphones [9] and the P-mic 
[1] have been used for automatic speech recognition.  Our 
work is distinct in several aspects: 1) we consider both 
simulated and actual noise conditions, 2) we do not as-
sume models for the glottal waveforms but instead use a 
learning approach, 3) we use late integration to combine 
several nonacoustic sensors, and 4) we consider integra-
tion accuracy of multiple nonacoustic sensors in low-
noise conditions. 
 
We attack the problem of authentication using nonacous-
tic sensors with a data-driven learning approach.  We 
have chosen the data-driven approach as a baseline to 
future knowledge-based analysis.  Sensor outputs can 
vary dramatically based on placement, sensor tuning, im-
pedance matching, sensor design, etc.  This variation can 
be captured easily with data-driven methods.  Towards 
this end, we use standard feature transformation methods 
to find features which describe the speaker specific at-
tributes of the different signals.  We use various normali-
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zations based upon signal characteristics to improve accu-
racy. 
 
After obtaining features for authentication, we use both 
Gaussian Mixture Models [18] and Support Vector Ma-
chines (SVM’s) [25] for multimodal authentication.  We 
combine the outputs of these different classification sys-
tems using late integration to achieve the final score.  For 
the corpora explored in this paper, we consider only 
closed-set speaker identification.  That is, given an utter-
ance, identify an individual from a list of known indi-
viduals.  Because of the limited number of speakers avail-
able in current corpora, other scenarios such as verifica-
tion or open-set ID were impossible because of the lack 
of an adequate “background” population. 
 
The outline of the paper is as follows.  In Section 2, we 
discuss the sensors in detail and describe their basic op-
eration.  In Section 3, we discuss our feature extraction 
methodology.  Section 4 outlines the classifiers and fu-
sion strategy used.  Section 5 gives details on the corpora 
used and experiments.  These corpora allow us to explore 
both the GEMS in quiet environments and multiple nona-
coustic sensors in high noise (>110 dBC) situations.  We 
show that our authentication strategy leads to gains in this 
challenging scenario.  A complimentary method for 
achieving authentication accuracy gains is speech en-
hancement [27]. 
 
2. Nonacoustic sensors 
 
We survey three nonacoustic sensors used for experi-
ments—GEMS, EGG, and P-mic.  These sensors have 
distinct methods of measuring speech production phe-
nomena.  Other sensors  which would be of interest, but 
were not included due to corpus size and project focus, 
are accelerometers, “bone phones,” in-ear microphones, 
video, etc. 
 
2.1. GEMS 
 
The GEMS (glottal electromagnetic micro-power sensor) 
is a novel sensor based upon transmitting electromagnetic 
(EM) waves into the glottal region.  Two GEMS designs 
were used in the corpora in this paper.  An earlier version 
was used in the LLNL Corpus [8], and Revision B, Ver-
sion 1 created by Aliph Corporation 
(http://www.aliph.com) was used in the ASE Corpus of 
Section 5.  The GEMS is also referred to as the “General 
Electromagnetic Movement Sensor” by Aliph Corpora-
tion. 
 
During operation of the GEMS, a small antenna is placed 
on or near the throat at the level of the glottis.  From this 
antenna is transmitted a 2.3 or 2.4 GHz low power 

(<1 mW) EM wave.  Using these frequencies allows for 
EM waves to penetrate into the body and reflect back to 
the sensor with good signal levels.  The receiver circuitry 
detects the reflected EM waves using a homodyne tech-
nique.  Nominally, the sensor measures phenomena re-
lated to the opening and closing of the glottis [2].  Multi-
ple theories have emerged on the exact phenomena occur-
ring that generates the waveform—changing air-tissue 
interfaces as the glottis changes, vibration of the tracheal 
wall, and propagation along the vocal fold contact area, 
see [11, 21].  Although inferring the exact process that the 
GEMS is monitoring is challenging, the waveforms gen-
erated do provide speaker specific information which is 
related to the speech excitation. 
 
2.2. EGG 
The EGG (electroglottograph) is a device designed to 
measure contact between the vocal folds.  The specific 
implementation used for this study was from Glottal En-
terprises.  This EGG is a multi-channel EGG device [19]; 
the multichannel feature allows for more precise place-
ment on the neck to achieve higher signal to noise ratio. 
 
The EGG nominally measures the vocal fold contact area 
(VFCA).  This process is performed by using electrical 
signals in the MHz region.  Two electrodes are placed on 
the subject’s neck at the level of the thyroid cartilage.  
VFCA is measured by observing the variation in imped-
ance over time.  Since the EGG measures vocal fold con-
tact, the sensor does not necessarily allow one to observe 
interesting phenomena during the open phase of the glot-
tis.  Note that the EGG is not an exact indicator of VFCA.  
For example, during transition to the open phase of the 
glottis, mucus can “short out” the device indicating that 
the glottis is closed when this is apparently not the case 
(the mucus bridging effect [4]). 
 
2.3. P-mic 
The P-mic (physiological microphone) is a non-invasive 
contact sensor for measuring sound [20].  The P-mic con-
sists of a gel pad to provide acoustic impedance matching, 
a conical focusing aperture, and a piezoelectric element.  
Use of a gel pad minimizes interference from ambient 
noise. 
 
The P-mic is typically placed in the throat area below the 
glottis.  This placement insures that the P-mic signal can 
be simultaneously recorded with the GEMS and EGG 
signal.  In our experiments, we found that the P-mic was 
most sensitive to ambient noise among nonacoustic sen-
sors; presumably this is due to “leakage” of the ambient 
noise into the sensor element. 
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 2.4. Comparison of the sensors 
 3. Feature extraction 
Figure 1 shows an example output from four sensors re-
corded simultaneously.  In the figure, the top signal is a 
microphone recording of the /ao/ in “dog.”  The second 
signal represents the EGG signal (highpass filtered with a 
linear phase filter with a transition band from 64-80 Hz).  
We note that the EGG gives a very “smooth” waveform.  
The third waveform from the top is the P-mic signal.  In 
this signal, we see more evidence of “leakage” of vocal 
tract information into the signal (as evidenced by ripple in 
the waveform).  Finally, the fourth waveform is the 
GEMS signal.  We can see this waveform has many of the 
same general characteristics as the EGG, but that there is 
additional structure in the waveform.  Listening to the 
GEMS signal reveals little vocal tract information; there-
fore, this fine structured seems to represent supplemen-
tary excitation information not captured by the EGG. 

 
Our framework for feature extraction is shown in Figure 
2.  Our goal was to create a flexible architecture that in-
corporated linear matrix transformation for feature extrac-
tion.  In the figure, the input signal is processed into 
frames creating a sequence of vectors.  Each frame corre-
sponds to a 30 ms time window with an overlap of 20 ms 
between consecutive frames.  Since our sampling rate is 8 
kHz, we obtain a sequence of vectors of dimension 240 
(100 vectors per second).   
 

 

 
 
Figure 1. Comparison of different sensor waveforms for 
the /ao/ in “dog.”  From top to bottom—audio, EGG, P-
mic, and GEMS.  The length of time shown is approxi-
mately 30 ms. 
 
 

 
We then applied several normalizations to the data; these 
normalizations are intended to provide invariances in the 
feature extraction to certain transforms—e.g., increasing 
the gain.  We first remove the mean on a per frame basis; 
we then normalize the amplitude of the signal variance to 
1.  Finally, we introduce a transform to reduce a framing 
artifact; namely, a shift of the input should not matter in 
recognition.  For this normalization, we calculate the dis-
crete Fourier transform (DFT) of each frame, eliminate 
the phase of each component, and then calculate the in-
verse DFT.  All of these normalizations are intended to 
throw out unnecessary signal information; potentially, 
they are too aggressive and could be modified. For exam-
ple, the mean of the EGG signal carries information about 
the position of the larynx.  In spite of drawbacks, these 
normalizations increased accuracy for all linear trans-
forms we tried. 
 
After appropriate normalization, the sequence of frames 
was used to calculate delta parameters [17].  This linear 
transform resulted in a sequence of vectors of dimension 
480.  We then wanted to design a linear transform to re-
duce this 480 component vector to a more reasonable 
dimension.  There are multiple reasons for dimension 
reduction—obtaining compact representations of speaker 
specific features, avoiding excessively complex classifi-
ers, discarding “uninformative” directions in feature 
space, and minimizing the “curse of dimensionality.”  For 
this paper, we explored several unsupervised methods of 
designing a linear transform—principal component analy-

Input 
Waveform 

Vector Data

Convert to 
Frames Normalizations 

Output FeaturesLinear Trans-
forms (to classifier) 

Figure 2. Framework for feature transformation.
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sis (PCA) [7], random dimension reduction [6], and inde-
pendent component analysis (ICA) [12]. 

All of our reported experiments use late integration for 
fusion [3].  Fusion is accomplished by using a linear com-
bination of scores from each of the classifiers applied to 
the different modalities.  Methods involving construction 
of new SVM kernels based upon sums of kernels for each 
of the modalities were also tried, but these did not 
perform as well as late integration. 

 
Random dimension reduction (i.e., generating the analysis 
matrix using random independent components) was used 
for multiple purposes.  We preprocessed all of the nor-
malized outputs (with delta components) from dimension 
480 down to dimension 100 using random dimension 
reduction.  As shown in [6], random dimension reduction 
tends to preserve distances and make clusters of data 
more spherical which improves problem conditioning.  
We found that for both PCA and ICA that this improved 
accuracy.  Random dimension reduction also reduces the 
size of the problem making methods such as ICA and 
PCA more practical for large problems.  Finally, random 
dimension reduction was also used as an analysis method 
to compare to other unsupervised methods. 

 
5. Corpora and experiments 
 
5.1. LLNL GEMS corpus and experimental setup 
 
The first corpus used for experiments was the Lawrence 
Livermore National Lab GEMS corpus collected by 
G. Burnett and T. Gable [8].  This corpus consists of 15 
male speakers with up to 4 sessions per speaker.  Both 
sentences from TIMIT and number/letter/{Yes,No,Zero} 
sequences were recorded.  For the purposes of our ex-
periments, we focused on the number/letter/short-word 
sequences.  Typical utterances were a combination of 10 
items; e.g., “T 60 YES 3 U R E 8 W P.”   

 
We note that our feature transformation method is very 
similar to the standard filter bank approach for generating 
mel-cepstral coefficients.  In a coarse sense, our approach 
could be thought of as applying a filter bank “tuned” to 
the glottal response.   

 
We used the initial session of 20 utterances as enrollment.  
The remaining 3 sessions of 20 utterances each were used 
for speaker identification.  This resulted in 15*60=900 
tests for speaker identification.  Both audio and GEMS 
data were originally sampled at 10 kHz.  We resampled to 
8 kHz and then bandlimited the speech to 200-4000 Hz. 

 
4. Classification and fusion 
 
Gaussian mixture models have been very successful for 
the speaker recognition task [18].  We use Gaussian mix-
ture models to model the speaker specific distribution 
only (i.e., no background modeling is performed since our 
task is closed-set identification).  For each speaker, we 
create a mixture model 

 
Noise was electronically added to the audio signal with 
noises from the NOISEX database [23].  (In Section 5.3 
and 5.4, we consider a corpus where the noise environ-
ment is not electrically added.)  The NOISEX noise sig-
nals were resampled to 8 kHz and also bandlimited to 
200-4000 Hz.  This insured that SNR was measured only 
in the band containing speech.  All 24 NOISEX noises 
were used.  When adding speech to noise, we generated a 
random offset into the noise file and then extracted a 
segment of noise the same length as the speech file.  The 
resulting output signal was x=xspeech+c*xnoise, where 

∑
=

=
n

i
ii gf

1
)()( xx λ  

where gi is a single Gaussian.  Training is accomplished 
using the EM algorithm with a small number of compo-
nents—typically less that 256.    
 
We also use support vector machines (SVM’s) for classi-
fication [25].  Support vector machines are discrimina-
tively trained classifiers and thus give excellent perform-
ance on closed set tasks.  For our experiments, we use a 
polynomial basis of monomials in our SVM kernel up to 
and including a certain degree—typically degree 2 or 3, 
see [25].  Our SVM kernel is based upon comparing se-
quences of data and providing an inner product in a large 
dimensional space which captures speaker specific infor-
mation.  One interesting aspect of using support vector 
machines for our work is that it is possible to bypass the 
feature transformation process and perform classification 
directly in high dimensions.  Although this is computa-
tionally intense, it gives a baseline for feature transformed 
classification systems which work in lower dimensions. 

10
SNR

10
−

=
noise

speechc
σ
σ

 

and the standard deviations are calculated over non-
silence regions. 
 
5.2. LLNL corpus results 
 
Our first set of experiments compared feature transforma-
tion methods.  As indicated in Section 4, we explored 
random dimension reduction, PCA, and ICA.  We ini-
tially considered closed-set speaker identification accu-
racy based upon the GEMS signal only.  Each feature 
vector was reduced from dimension 480 to 100 using  
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Table 1.  Comparison of accuracy of feature transforma-
tion methods for GEMS-only closed-set speaker identifi-
cation on the LLNL database. 

Feature Extraction 
Method 

Speaker 
Identification Accuracy (%) 

Random Projection 62.7 % 
PCA 59.7 % 
ICA 51.9 % 
None 64.3 % 
  
0
0 5 10 15 20 25 30 35

SNR (dB)

I 0.7 audio, 0.3 GEMS
0.8 audio, 0.2 GEMS

 
Figure 3. Comparison of speaker identification accuracy 
across noise type 3 (white noise) for different late integra-
tion strategies and random dimension reduction. 

random dimension reduction.  A linear transform was 
then designed and applied to reduce the dimension from 
100 to 32 for input to the classifier.  Dimension 32 was 
chosen since the accuracy typically plateaued at this di-
mension.  A SVM classifier with a degree 2 polynomial 
kernel (full covariance) was used, see [25].   
 
Table 1 compares accuracies for the different methods.  
Also included in the table is the case of no dimension 
reduction (with a diagonal covariance SVM kernel) which 
provides a baseline for reduced dimension methods.  As 
can be seen from the table, random projection works as 
well as other transformation methods.  Potentially, this is 
due to multiple factors.  The classifier may be better 
matched to this feature extraction technique.  Also, there 
could be spurious directions in the feature space data 
which are not relevant to speaker identification.  One way 
to mitigate this problem (which we do not explore here) is 
to use supervised feature transformation methods, e.g. 
[22]. 
 
After using linear transform feature extraction methods 
for speaker identification, we investigated the use of 
fundamental frequency (F0) to augment the recognition 
process.  The Entropic pitch extractor in Wavesurfer 
(http://www.speech.kth.se/wavesurfer) was used.  A 
GMM was trained with 32 components to model each 
speaker from the F0 data.  The resulting error rate for 
GEMS only recognition was 50.6%.  Note that a similar 
rate of accuracy was also observed for the audio data us-
ing F0 only—49.1%. 
 
We then fused (with equal weights) the GEMS F0 classi-
fier scores with the linear transform feature extraction 
scores (random dimension reduction) to obtain a GEMS-
only accuracy of 64.0%.  The use of F0 information dem-
onstrated two items.  First, since F0-only classification 
accuracy is significantly below that of linear transform 
feature extraction accuracy, we are obtaining additional 
non-F0 information from our linear transform technique.  

Second, because the accuracy improved from the fusion, 
there is complementary information in the two scores. 
 
Finally, we considered the effect of late integration upon 
speaker identification in noise.  We implemented an au-
dio-only speaker recognition system using the system in 
[25] with a degree 3, diagonal covariance model; input 
features were 12 LP cepstral coefficients plus deltas.  In 
addition, the MELPe noise preprocessor [24] was applied 
to the audio input signal.  Figure 3 shows the performance 
of a late integration system which fuses an audio-based 
system with the GEMS-based system (both pitch and lin-
ear feature transformation were used).  In the figure, at 
low SNR (0-10 dB) and for NOISEX white noise (noise 
type 3), significant increases in accuracy are obtained by 
late integration—greater than 50% in some cases. 
 
We then considered the effect of late integration with a 
fixed weighting, 0.5*GEMS + 0.5*audio, as the type of 
noise varied for a fixed SNR (specific information on the 
noise types can be found in the NOISEX corpus docu-
mentation).  The results for 0 dB SNR are shown in Fig-
ure 4.  As can be seen from the figure, significant in-
creases in accuracy over an audio-only system are 
achieved—greater than 25% average improvement.  The 
best performing environments were NOISEX types 3 
(white noise), 16 (machine gun), 18 (STI test signal), 19 
(voice babble), and 21 (factory).  The worst performing 
environments were NOISEX types 1 (sinusoid), 5 (col-
ored, -12 dB/octave), 9 (Leopard 2), 23 (Car) and 24 
(Car). 
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5.3. ASE corpus and experimental setup 

 
The Advanced Speech Encoding Pilot Corpus (ASE Pilot 
Corpus) is a multisensor corpus collected for the purpose 
of studying viability of multiple sensors for speech en-
hancement, speech coding, and speaker characterization.  
Sensors recorded simultaneously include a resident mi-
crophone (the microphone typically used in the environ-
ment), two channels of a GEMS device, an EGG, a high 
quality reference microphone (B&K), and P-mics posi-
tioned on the forehead and the throat region. The corpus 
was collected in two sessions (on two different days). 
Speakers were exposed to a variety of noise environ-
ments—-quiet, office (56 dBC), MCE (mobile command 
enclosure, 79 dBC), M2 Bradley Fighting Vehicle (74 
dBC and 114 dBC), MOUT (military operations in urban 
terrain, 73 dBC and 113 dBC), and a Blackhawk helicop-
ter (70 dBC and 110 dBC).  We call these environments 
(with L indicating low noise and H indicating high noise) 
quiet, office, MCE, M2L, M2H, MOUTL, MOUTH, 
BHL and BHH, respectively. To protect our subjects and 
realistically simulate Lombard effects, all talkers used the 
hearing protection systems typical of each environment. 
This normally consisted of a communication headset with 
approximately 20 dB noise attenuation.  Human subject 
testing procedures were followed carefully and noise 
exposure was monitored. 
 
For speaker identification experiments, we partitioned the 
corpus by session.  The initial sessions—quiet, office, and 
MCE—were used for enrollment.  Identification was then 
performed using the data from the remaining sessions; we 

grouped these into low noise—M2L, MOUTL, BHL—
and high noise—M2H, MOUTH, BHH—conditions.  The 
corpus had phrases in both sessions drawn from a variety 
of material—conversations, DRT lists, vowels, Harvard 
phonetically balanced sentences, and CVC nonsense 
words.  Typical utterance lengths ranged from 1-5 min-
utes.  A total of 20 speakers were available, 10 males and 
10 females.  The total number of enrollment utterance 
available per speaker was 12.  The total number of tests 
for identification performance was 360 per noise condi-
tion (low, high).  Cross-gender testing was allowed since 
it was not clear if the nonacoustic sensors would distin-
guish this well; cross-gender tests do not bias identifica-
tion accuracy (as they would in speaker verification). 
 
5.4. ASE corpus results 
 
The feature extraction methods from Section 3 were ap-
plied to the ASE pilot corpus.  As for the experiments in 
Section 5.2, we used a SVM with diagonal covariance 
and degree 3 polynomials for the audio modality.  For the 
nonacoustic modalities, we used a full covariance SVM 
of degree 2 with random dimension reduction.  Both the 
MELPe noise preprocessor and high-pass filtering above 
200 Hz were applied to the audio signal.  The MELPe 
noise preprocessor was applied to the non-acoustic mo-
dalities, since noise from the ambient environment did 
effect the sensor outputs (possibly through tissue vibra-
tion).  The EGG was highpass filtered with a linear phase 
filter with transition band from 64-80 Hz.  Results are 
shown in Table 2. 
 
Since the P-mic has some vocal tract information (as evi-
denced by listening), we also applied a standard LP cep-
stral coefficient front end to the data; i.e., we applied the 
audio recognition system to all sensors.  Results for this 
set of experiments are shown in Table 3.  As can be seen 
from the table, accuracy results for both the EGG and 
GEMS are generally lower for LP cepstral coefficients 
than with data driven methods shown in Table 2.  For the 
P-mic, the identification accuracy is higher for LPCC’s; 
this illustrates that standard methods are tuned to extract-
ing vocal tract information. 
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Figure 4. Improvement in speaker identification ac-
curacy of a late-integration fusion system over an au-
dio-only system by noise type (NOISEX database) at 
0 dB SNR. 

Table 2.  Identification accuracy in both low and high 
noise situations for multiple modalities using random 
dimension reduction. 
Modality Low Noise 

Accuracy 
High Noise  
Accuracy 

EGG 73.0 % 43.3 % 
GEMS 64.7 % 43.6 % 
P-mic 66.7 % 41.4 % 
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Table 4.  Identification accuracy in both low and high 
noise situations for late integration fusion. 
Modalities Fused Low Noise 

Accuracy 
High Noise 
Accuracy 

Audio (Resident Mic) 89.4 % 81.9 % 
0.8*Audio+0.2*EGG 93.1 % 86.7 % 
0.8*Audio+0.2*GEMS 92.5 % 85.8 % 
0.5*Audio+0.5*P-mic 95.8 % 87.2 % 
All 95.8 % 89.4 % 

Table 3.  Identification accuracy in both low and high 
noise situations for multiple modalities using LP cep-
stral coefficients. 
Modality Low Noise 

Accuracy 
High Noise  
Accuracy 

Resident Mic 89.4 % 81.9 % 
EGG 61.1 % 38.0 % 
GEMS 50.3 % 43.6 % 
P-mic 77.5 % 55.0 % 

As indicated in Table 4, we obtain substantial gains of 
7.5% in speaker identification accuracy in noise, over the 
resident-microphone-only case by combining nonacoustic 
and acoustic scores.  This result shows the potential of 
these methods for noise robust speaker authentication. 
 
6. Conclusions 
 
We have demonstrated the use of nonacoustic sensors for 
speaker authentication.  A data-driven approach was used 
to derive features of different modalities.  Powerful clas-
sification techniques such as support vector machines and 
Gaussian mixture models were then applied.  Results in 
both simulated and actual noisy conditions showed the 
success of the techniques for dramatically improving 
speaker authentication in noise.  Future work should ex-
plore methods on statistically-significant larger speaker 
populations to further validate results. 
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